Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Commun Biol ; 7(1): 417, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580813

RESUMO

The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce ß2-adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant ß2-adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the ß2-adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A2A-adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists.


Assuntos
Agonistas Adrenérgicos beta , Agonismo Inverso de Drogas , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Transdução de Sinais , Ligantes , Receptores Adrenérgicos
2.
Sci Signal ; 17(828): eabl3758, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502733

RESUMO

CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.


Assuntos
Quimiocinas CXC , Glicosaminoglicanos , Quimiocinas CXC/metabolismo , Glicosaminoglicanos/farmacologia , Ligantes , Quimiocinas/metabolismo , Transdução de Sinais , Receptores CXCR4/genética , Quimiocina CXCL12
3.
ACS Med Chem Lett ; 15(1): 143-148, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229752

RESUMO

The atypical chemokine receptor 3 (ACKR3) is a receptor that induces cancer progression and metastasis in multiple cell types. Therefore, new chemical tools are required to study the role of ACKR3 in cancer and other diseases. In this study, fluorescent probes, based on a series of small molecule ACKR3 agonists, were synthesized. Three fluorescent probes, which showed specific binding to ACKR3 through a luminescence-based NanoBRET binding assay (pKd ranging from 6.8 to 7.8) are disclosed. Due to their high affinity at the ACKR3, we have shown their application in both competition binding experiments and confocal microscopy studies showing the cellular distribution of this receptor.

4.
Biochem Pharmacol ; : 116007, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38145828

RESUMO

Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.

5.
iScience ; 26(7): 107232, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37496673

RESUMO

E-selectin is expressed on endothelial cells in response to inflammatory cytokines and mediates leukocyte rolling and extravasation. However, studies have been hampered by lack of experimental approaches to monitor expression in real time in living cells. Here, NanoLuc Binary Technology (NanoBiT) in conjunction with CRISPR-Cas9 genome editing was used to tag endogenous E-selectin in human umbilical vein endothelial cells (HUVECs) with the 11 amino acid nanoluciferase fragment HiBiT. Addition of the membrane-impermeable complementary fragment LgBiT allowed detection of cell surface expression. This allowed the effect of inflammatory mediators on E-selectin expression to be monitored in real time in living endothelial cells. NanoBiT combined with CRISPR-Cas9 gene editing allows sensitive monitoring of real-time changes in cell surface expression of E-selectin and offers a powerful tool for future drug discovery efforts aimed at this important inflammatory protein.

6.
Biochem Pharmacol ; 214: 115672, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406966

RESUMO

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis, proliferation and migration of vascular endothelial cells. It is well known that cardiovascular safety liability for a wide range of small molecule tyrosine kinase inhibitors (TKIs) can result from interference with the VEGFR2 signalling system. In this study we have developed a ligand-binding assay using a fluorescent analogue of sunitinib (sunitinib-red) and full length VEGFR2 tagged on its C-terminus with the bioluminescent protein nanoluciferase to monitor ligand-binding to VEGFR2 using bioluminescence resonance energy transfer (BRET). This NanoBRET assay is a proximity-based assay (requiring the fluorescent and bioluminescent components to be within 10 nm of each other) that can monitor the binding of ligands to the kinase domain of VEGFR2. Sunitinib-red was not membrane permeable but was able to monitor the binding affinity and kinetics of a range of TKIs in cell lysates. Kinetic studies showed that sunitinib-red bound rapidly to VEGFR2 at 25 °C and that cediranib had slower binding kinetics with an average residence time of 111 min. Comparison between the log Ki values for inhibition of binding of sunitinib-red and log IC50 values for attenuation of VEGF165a-stimulated NFAT responses showed very similar values for compounds that inhibited sunitinib-red binding. However, two compounds that failed to inhibit sunitinib-red binding (dasatinib and entospletinib) were still able to attenuate VEGFR2-mediated NFAT signalling through inhibition of downstream signalling events. These results suggest that these compounds may still exhibit cardiovascular liabilities as a result of interference with downstream VEGFR2 signalling.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Ligantes , Cinética , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Br J Pharmacol ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386806

RESUMO

Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands. Conformational changes in the orthosteric ligand binding site can also be induced through interaction with neighbouring accessory proteins and receptor homodimerisation and heterodimerisation. In this review, we provide an overview of the use of fluorescent ligand technologies to interrogate ligand-receptor kinetics in living cells and the novel insights that they can provide into the conformational changes induced by drugs acting on a variety of cell surface receptors including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and cytokine receptors.

8.
Cell ; 186(10): 2238-2255.e20, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37146613

RESUMO

ß-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-ß-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in ß-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that ß-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes ß-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of ß-arrestin function at the plasma membrane, revealing a critical role for ß-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , beta-Arrestinas , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Bicamadas Lipídicas , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular
9.
Nat Commun ; 14(1): 2882, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208328

RESUMO

Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology. In this study, we use a fluorescent version of IL-23 to characterise antagonists of the full-length receptor expressed by living cells using a NanoBRET competition assay. We then develop a cyclic peptide fluorescent probe, specific to the IL23p19:IL23R interface and use this molecule to characterise further receptor antagonists. Finally, we use the assays to study the immunocompromising C115Y IL23R mutation, demonstrating that the mechanism of action is a disruption of the binding epitope for IL23p19.


Assuntos
Corantes Fluorescentes , Receptores de Interleucina , Células HEK293 , Humanos , Receptores de Interleucina/antagonistas & inibidores , Receptores de Interleucina/genética , Corantes Fluorescentes/metabolismo , Mutação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Polimorfismo de Nucleotídeo Único , Peptídeos Cíclicos
10.
Cell Rep Methods ; 3(3): 100422, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056381

RESUMO

The therapeutic potential of ligands targeting disease-associated membrane proteins is predicted by ligand-receptor binding constants, which can be determined using NanoLuciferase (NanoLuc)-based bioluminescence resonance energy transfer (NanoBRET) methods. However, the broad applicability of these methods is hampered by the restricted availability of fluorescent probes. We describe the use of antibody fragments, like nanobodies, as universal building blocks for fluorescent probes for use in NanoBRET. Our nanobody-NanoBRET (NanoB2) workflow starts with the generation of NanoLuc-tagged receptors and fluorescent nanobodies, enabling homogeneous, real-time monitoring of nanobody-receptor binding. Moreover, NanoB2 facilitates the assessment of receptor binding of unlabeled ligands in competition binding experiments. The broad significance is illustrated by the successful application of NanoB2 to different drug targets (e.g., multiple G protein-coupled receptors [GPCRs] and a receptor tyrosine kinase [RTK]) at distinct therapeutically relevant binding sites (i.e., extracellular and intracellular).


Assuntos
Anticorpos de Domínio Único , Ligantes , Proteínas de Membrana , Corantes Fluorescentes , Receptores Acoplados a Proteínas G/metabolismo
11.
J Med Chem ; 66(7): 5208-5222, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36944083

RESUMO

The C-X-C chemokine receptor type 4, or CXCR4, is a chemokine receptor found to promote cancer progression and metastasis of various cancer cell types. To investigate the pharmacology of this receptor, and to further elucidate its role in cancer, novel chemical tools are a necessity. In the present study, using classic medicinal chemistry approaches, small-molecule-based fluorescent probes were designed and synthesized based on previously reported small-molecule antagonists. Here, we report the development of three distinct chemical classes of fluorescent probes that show specific binding to the CXCR4 receptor in a novel fluorescence-based NanoBRET binding assay (pKD ranging 6.6-7.1). Due to their retained affinity at CXCR4, we furthermore report their use in competition binding experiments and confocal microscopy to investigate the pharmacology and cellular distribution of this receptor.


Assuntos
Corantes Fluorescentes , Receptores CXCR4 , Receptores CXCR4/metabolismo , Ligantes , Corantes Fluorescentes/química , Ligação Proteica , Quimiocinas/metabolismo , Quimiocina CXCL12/metabolismo
12.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982447

RESUMO

The clinical manifestations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection responsible for coronavirus disease 2019 (COVID-19) commonly include dyspnoea and fatigue, and they primarily involve the lungs. However, extra-pulmonary organ dysfunctions, particularly affecting the cardiovascular system, have also been observed following COVID-19 infection. In this context, several cardiac complications have been reported, including hypertension, thromboembolism, arrythmia and heart failure, with myocardial injury and myocarditis being the most frequent. These secondary myocardial inflammatory responses appear to be associated with a poorer disease course and increased mortality in patients with severe COVID-19. In addition, numerous episodes of myocarditis have been reported as a complication of COVID-19 mRNA vaccinations, especially in young adult males. Changes in the cell surface expression of angiotensin-converting enzyme 2 (ACE2) and direct injury to cardiomyocytes resulting from exaggerated immune responses to COVID-19 are just some of the mechanisms that may explain the pathogenesis of COVID-19-induced myocarditis. Here, we review the pathophysiological mechanisms underlying myocarditis associated with COVID-19 infection, with a particular focus on the involvement of ACE2 and Toll-like receptors (TLRs).


Assuntos
COVID-19 , Miocardite , Humanos , COVID-19/complicações , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2 , Miocardite/etiologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Receptores Toll-Like
13.
Br J Pharmacol ; 180(11): 1444-1459, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36560872

RESUMO

BACKGROUND AND PURPOSE: Interleukin-23 (IL-23) and its receptor are important drug targets for the treatment of auto-inflammatory diseases. IL-23 binds to a receptor complex composed of two single transmembrane spanning proteins IL23R and IL12Rß1. In this study, we aimed to gain further understanding of how ligand binding induces signalling of IL-23 receptor complexes using the proximity-based techniques of NanoLuc Binary Technology (NanoBiT) and Bioluminescence Resonance Energy Transfer (BRET). EXPERIMENTAL APPROACH: To monitor the formation of IL-23 receptor complexes, we developed a split luciferase (NanoBiT) assay whereby heteromerisation of receptor subunits can be measured through luminescence. The affinity of NanoBiT complemented complexes for IL-23 was measured using NanoBRET, and cytokine-induced signal transduction was measured using a phospho-STAT3 AlphaLISA assay. KEY RESULTS: NanoBiT measurements demonstrated that IL-23 receptor complexes formed to an equal degree in the presence and absence of ligand. NanoBRET measurements confirmed that these complexes bound IL-23 with a picomolar binding affinity. Measurement of STAT3 phosphorylation demonstrated that pre-formed IL-23 receptor complexes induced signalling following ligand binding. It was also demonstrated that synthetic ligand-independent signalling could be induced by high affinity (HiBit) but not low affinity (SmBit) NanoBiT crosslinking of the receptor N-terminal domains. CONCLUSIONS AND IMPLICATIONS: These results indicate that receptor complexes form prior to ligand binding and are not sufficient to induce signalling alone. Our findings indicate that IL-23 induces a conformational change in heteromeric receptor complexes, to enable signal transduction. These observations have direct implications for drug discovery efforts to target the IL-23 receptor.


Assuntos
Interleucina-23 , Transdução de Sinais , Ligantes , Luciferases/química , Luciferases/metabolismo , Multimerização Proteica , Sobrevivência Celular
14.
Br J Pharmacol ; 180(10): 1304-1315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495270

RESUMO

BACKGROUND AND AIM: Standard pharmacological analysis of agonist activity utilises measurements of receptor-mediated responses at a set time-point, or at the peak response level, to characterise ligands. However, the occurrence of non-equilibrium conditions may dramatically impact the properties of the response being measured. Here we have analysed the initial kinetic phases of cAMP responses to ß2 -adrenoceptor agonists in HEK293 cells expressing the endogenous ß2 -adrenoceptor at extremely low levels. EXPERIMENTAL APPROACH: The kinetics of ß2 -adrenoceptor agonist-stimulated cAMP responses were monitored in real-time, in the presence and absence of antagonists, in HEK293 cells expressing the cAMP GloSensor™ biosensor. Potency (EC50 ) and efficacy (Emax ) values were determined at the peak of the agonist GloSensor™ response and compared to kinetic parameters L50 and IRmax values derived from initial response rates. KEY RESULTS: The partial agonists salbutamol and salmeterol displayed reduced relative IRmax values (with respect to isoprenaline) when compared with their Emax values. Except for the fast dissociating bisoprolol, preincubation with ß2 -adrenoceptor antagonists produced a large reduction in the isoprenaline peak response due to a state of hemi-equilibrium in this low receptor reserve system. This effect was exacerbated when IRmax parameters were measured. Furthermore, bisoprolol produced a large reduction in isoprenaline IRmax consistent with its short residence time. CONCLUSIONS AND IMPLICATIONS: Kinetic analysis of real-time signalling data can provide valuable insights into the hemi-equilibria that can occur in low receptor reserve systems with agonist-antagonist interactions, due to incomplete dissociation of antagonist whilst the peak agonist response is developing.


Assuntos
Agonistas Adrenérgicos beta , Bisoprolol , Humanos , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta , Células HEK293 , Isoproterenol/farmacologia , Cinética , Receptores Adrenérgicos beta 2 , AMP Cíclico/metabolismo
15.
Front Immunol ; 13: 1006718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505413

RESUMO

Introduction: The Epidermal Growth Factor Receptor is a member of the Erb receptor tyrosine kinase family. It binds several ligands including EGF, betacellulin (BTC) and TGF-α, controls cellular proliferation and invasion and is overexpressed in various cancer types. Nanobodies (VHHs) are the antigen binding fragments of heavy chain only camelid antibodies. In this paper we used NanoBRET to compare the binding characteristics of fluorescent EGF or two distinct fluorescently labelled EGFR directed nanobodies (Q44c and Q86c) to full length EGFR. Methods: Living HEK293T cells were stably transfected with N terminal NLuc tagged EGFR. NanoBRET saturation, displacement or kinetics experiments were then performed using fluorescently labelled EGF ligands (EGF-AF488 or EGF-AF647) or fluorescently labelled EGFR targeting nanobodies (Q44c-HL488 and Q86c-HL488). Results: These data revealed that the EGFR nanobody Q44c was able to inhibit EGF binding to full length EGFR, while Q86c was able to recognise agonist bound EGFR and act as a conformational sensor. The specific binding of fluorescent Q44c-HL488 and EGF-AF488 was inhibited by a range of EGFR ligands (EGF> BTC>TGF-α). Discussion: EGFR targeting nanobodies are powerful tools for studying the role of the EGFR in health and disease and allow real time quantification of ligand binding and distinct ligand induced conformational changes.


Assuntos
Anticorpos de Domínio Único , Humanos , Fator de Crescimento Transformador alfa , Ligantes , Fator de Crescimento Epidérmico , Células HEK293 , Receptores ErbB , Corantes , Cadeias Pesadas de Imunoglobulinas
16.
J Med Chem ; 65(12): 8258-8288, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35734860

RESUMO

The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.


Assuntos
Histamina , Receptores Histamínicos H1 , Corantes Fluorescentes/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptídeos , Receptores Histamínicos/metabolismo , Receptores Histamínicos H1/metabolismo
17.
Pharmacol Res Perspect ; 10(3): e00975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35643970

RESUMO

A2A and A2B adenosine receptors produce regionally selective regulation of vascular tone and elicit differing effects on mean arterial pressure (MAP), whilst inducing tachycardia. The tachycardia induced by the stimulation of A2A or A2B receptors has been suggested to be mediated by a reflex increase in sympathetic activity. Here, we have investigated the role of ß1 - and ß2 -adrenoceptors in mediating the different cardiovascular responses to selective A2A and A2B receptor stimulation. Hemodynamic variables were measured in conscious male Sprague-Dawley rats (350-450 g) via pulsed Doppler flowmetry. The effect of intravenous infusion (3 min per dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1.0 µg.kg-1 .min-1 ) or the A2B -selective agonist BAY 60-6583 (4.0, 13.3, 40.0 µg.kg-1 .min-1 ) in the absence or following pre-treatment with the non-selective ß-antagonist propranolol (1.0 mg.kg-1 ), the selective ß1 -antagonist CGP 20712A (200 µg.kg-1 ), or the selective ß2 -antagonist ICI 118,551 (2.0 mg.kg-1 ) was investigated (maintenance doses also administered). CGP 20712A and propranolol significantly reduced the tachycardic response to CGS 21680, with no change in the effect on MAP. ICI 118,551 increased BAY 60-6583-mediated renal and mesenteric flows, but did not affect the heart rate response. CGP 20712A attenuated the BAY 60-6583-induced tachycardia. These data imply a direct stimulation of the sympathetic activity via cardiac ß1 -adrenoceptors as a mechanism for the A2A - and A2B -induced tachycardia. However, the regionally selective effects of A2B agonists on vascular conductance were independent of sympathetic activity and may be exploitable for the treatment of acute kidney injury and mesenteric ischemia.


Assuntos
Antagonistas Adrenérgicos beta , Propranolol , Adenosina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Sanguínea , Masculino , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/fisiologia , Taquicardia/induzido quimicamente
18.
FASEB J ; 36(4): e22214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35230706

RESUMO

Adenosine is a local mediator that regulates changes in the cardiovascular system via activation of four G protein-coupled receptors (A1 , A2A , A2B , A3 ). Here, we have investigated the effect of A2A and A2B -selective agonists on vasodilatation in three distinct vascular beds of the rat cardiovascular system. NanoBRET ligand binding studies were used to confirm receptor selectivity. The regional hemodynamic effects of adenosine A2A and A2B selective agonists were investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal artery, mesenteric artery, and the descending abdominal aorta. Cardiovascular responses were measured following intravenous infusion (3 min for each dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1 µg kg-1 min-1 ) or the A2B -selective agonist BAY 60-6583 (4,13.3, 40 µg kg-1 min-1 ) following predosing with the A2A -selective antagonist SCH 58261 (0.1 or 1 mg kg-1 min-1 ), the A2B /A2A antagonist PSB 1115 (10 mg kg-1 min-1 ) or vehicle. The A2A -selective agonist CGS 21680 produced a striking increase in heart rate (HR) and hindquarters vascular conductance (VC) that was accompanied by a significant decrease in mean arterial pressure (MAP) in conscious rats. In marked contrast, the A2B -selective agonist BAY 60-6583 significantly increased HR and VC in the renal and mesenteric vascular beds, but not in the hindquarters. Taken together, these data indicate that A2A and A2B receptors are regionally selective in their regulation of vascular tone. These results suggest that the development of A2B receptor agonists to induce vasodilatation in the kidney may provide a good therapeutic approach for the treatment of acute kidney injury.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Hemodinâmica/efeitos dos fármacos , Receptor A2A de Adenosina/fisiologia , Receptor A2B de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Aminopiridinas/farmacologia , Animais , Células HEK293 , Humanos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Masculino , Fenetilaminas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia , Vasodilatação/efeitos dos fármacos , Xantinas/farmacologia
19.
Br J Pharmacol ; 179(14): 3651-3674, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106752

RESUMO

GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signalling' paradigm requires that we now characterize physiological signalling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signalling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Descoberta de Drogas , Ligantes , Reprodutibilidade dos Testes
20.
Cell Chem Biol ; 29(1): 19-29.e6, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34038748

RESUMO

Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defense against pathogens but is also implicated in the development of several autoimmune disorders. The IL-23 receptor has become a key target for drug discovery, but the exact mechanism of the receptor ligand interaction remains poorly understood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12Rß1) and the heteromeric complex formed between them have been measured in living cells using NanoLuciferase-tagged full-length proteins. Here, we demonstrate that TAMRA-tagged IL-23 has a greater than 7-fold higher affinity for IL12Rß1 than IL23R. However, in the presence of both receptor subunits, IL-23 affinity is increased more than three orders of magnitude to 27 pM. Furthermore, we show that IL-23 induces a potent change in the position of the N-terminal domains of the two receptor subunits, consistent with a conformational change in the heteromeric receptor structure.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Interleucina-23/imunologia , Luciferases/imunologia , Receptores de Interleucina/imunologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Interleucina-23/química , Luciferases/metabolismo , Ligação Proteica , Receptores de Interleucina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...